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Exact numerical and approximation analytical solutions are obtained for the escape of diffusing parti-
cles from a one-dimensional, finite box in which the absorbing boundary has time-modulated gating
properties; that is, it has a time-dependent reactivity proportional to a square wave, a saw-toothed wave,
or a sine-squared wave. The results may have applications to intramolecular fluorescence quenching,
movement of electrons in semiconductors through a time-varying insulating layer, and localization of

components on a membrane surface.

PACS number(s): 05.40.+j, 66.10.Cb, 82.20.Wt

Systems which are overdamped due to the frictional
drag of solvent have the motion of their constituents de-
scribed by the diffusion equation. An important aspect of
this general physical process is the problem of diffusion
from one side of a potential barrier to the other side (the
escape-over-the-barrier problem), as discussed originally
by Kramers [1]. Study of this problem is important be-
cause of its occurrence as an approximation to the true
physical situation in many cases involving interfaces and
surfaces. It may also be related to quantum-mechanical
barrier penetration using stochastic quantization
methods [2].

There has recently been renewed interest in the
escape-over-the-barrier problem when the barrier height
(and possibly shape) is varying in time [3-6]. A fluctuat-
ing barrier could be important in intramolecular fluores-
cence quenching [7], movement of electrons in semicon-
ductors through a time-varying insulating layer [6], local-
ization of components on the membrane surface [8], and
other areas of biology, chemistry, and physics.

In this paper the emphasis is on the absorbing barrier
having time-modulated gating properties (rather than a
changing barrier height) which allow the diffusing parti-
cles to pass to the other side, that is, a first-passage-type
problem [9] in which the absorbing boundary has a time-
dependent reactivity [10]. The physical system to be ex-
amined is diffusion in a one-dimensional box of width L
at absolute temperature T and with diffusion coefficient
D. The diffusion equation is
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for the position probability density p(x,¢) in the space
0<x <L, as shown in Fig. 1. The initial condition is
chosen to be

1
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p(x,0) L (2)

which is a uniform distribution, and the boundary condi-
tions are
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at the reflecting boundary and
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at the boundary which is fluctuating in time (see Fig. 1).

Since D(3dp/dx) is the flux at the boundary, Eq. (3)
corresponds to complete reflection at the boundary
x =L. Equation (4) is the “radiation” boundary condi-
tion [10-14] at the x =0 interface (e.g., a semi-
conductor-insulator interface). This boundary has a
time-dependent reactivity (), which determines the ex-
tent to which the boundary is completely absorbing
(k =Ky Open gate) versus completely reflecting (k=0,
closed gate). The gate variability could be due to a poten-
tial barrier that changes between high and low states.

To study the properties of the gating boundary at
x =0, we calculate the fraction of particles N(z) that
have not passed through this boundary at time ¢, given by
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FIG. 1. Schematic view of the diffusion space of length L
with the reflecting boundary (infinite potential barrier) and the
gated boundary at which the diffusing particles ability to escape
is time dependent.
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It is the time dependence of N (¢) as a function of the gate
reactivity «(¢) that is of interest.

To find N(t), an approximate analytical form is de-
rived for three cases in which «(?) is a periodic function
of time. The analytical approximation is verified by exact
numerical solution of Egs. (1)-(5) for three examples.
Because the gate reactivity «(¢) is time dependent, there
is no first-passage time, but an average over a period of
the reactivity «(¢) for a periodic gating can be carried out
and results are presented for the three examples studied.
Finally a brief discussion of the results is given and some
future studies are suggested.

To obtain an approximate analytical form for N(t), we
use the differential equation that it has been shown [15]
previously to satisfy, namely,

L dN

D) dr [g(t)N(t)]+N(t)— (6)

Ddt

where g (2) is defined by the integral (see Ref. [15])
J Fdx plx, 0% (L —4x)=g (ON (1) )

and is a parameter with units of squared length whose
value determines the approximation to N (¢). If g (¢) were
known for all ¢, then N (¢) could be calculated exactly
from Eq. (6). Conversely, approximating g (¢) leads to an
approximate solution for N (¢). Knowing p(x,t) for a
particular value ¢t =¢' allows the integrals in Egs. (5) and
(7) to be carried out to determine g(z¢'). For example, if «
were time independent, replacing g(¢) by the constant
value g(O)=L2/ 3, which is determined from the initial
condition on p(x,t) [Eq. (2)] gives the first-passage time
approximation [9] to N (¢).

As a first approximation to an analytical form for N (¢)
in the general case with g a function of time, we approxi-
mate g (¢) by its first-passage time value g (0). Exact nu-
merical calculations of N(z) establish the validity of this
approximation. Substituting g(0) into Eq. (6) and in-
tegrating gives the approximate analytical value of N (z),
namely,

Nn=exp [~ [[ar/zie |, (®)

where 7(t) is the first-passage time result for this physical
situation with the usual time-independent reactivity re-
placed by «(t), that is, 7(¢)=L /«(t)+L?/3D. This result
may be understood as the mean time to diffuse a distance
L(L?*/3D) plus the mean time to pass over the barrier
once the particle is at the barrier edge [L /x(¢)].

To find exact numerical solutions for N(t), Egs.
(1)-(4) were integrated numerically using the finite-
difference method [16]. The resulting values for p(x,t)
were then used in Eq. (5) to find N (¢) with Simpson’s rule
[17]. All calculations were performed using the Matlab
numerical analysis software [18].

In order to calculate N (¢) analytically or numerically,
k(t) in the boundary condition at x =0, given in Eq. (4),
must be specified. We used the form of «(¢) from kinetic
theory [10,13,14] to write the boundary condition at
x =0as

| _ BB (v
x |i=0 2-B0 D Py’ ©
that is,
__B()
K(t)= =B < ) (10)

(see Appendix B of Ref. [10] for a derivation). Here (v )
is the root-mean-square velocity from kinetic theory, and
B(t) is the probability that the diffusing particles will pass
over the barrier, i.e., 0 <8(¢) < 1. For example, if the bar-
rier at x =0 is due to a narrow, time-varying potential-
energy function 11’}( t;w;l;cuch the height changes with time,
that is, B(t)=~e 2" then when ¥V =0, =1, when
V' =0.693kpT, B=1, and when V— o, B—0.

Introducing the parameters Tp,=L?/D and
y=L(v) /3D, the approximate, analytical solution for
N (), Eq. (8), becomes

Y (tar B(t')
2T, Yo t (y—1)
b 1+ 5 B(t’)

N(t)=exp |— (11)

The parameter ¥ is the ratio of the size of the diffusion
space L to the mean free path between collisions / for the
medium, ¥y =L /I. This follows from the definition of the
diffusion coefficient as D=I{v)/3. For physically
correct results (validity of the diffusion equation), y
should be greater than 1. However, mathematical solu-
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FIG. 2. The three periodic gating probabilities [8(z)]. The
square-wave gating probability is shown in (a) with on-time #,
and off-time ¢,. The saw-toothed gating probability is shown in
(b) with rise time ¢, and fall time ¢,. The sine-squared gating
probability is shown in (c) with periodicity P.
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FIG. 3. Results for the remaining fraction N (#) as a function
of time for the exact numerical solution (solid lines) and for the
approximation of Eq. (7) (dashed lines) for the square-wave
probability B(¢) shown in Fig. 2(a). The parameter
y=L{v)/3D. The parameters used were T,=1, L =1,
ty=0.2Tp, ¢t,=0.2Tp, y=1 for the upper two curves and
Tp=1, L=1,1,=0.2Tp, t,=0.2T,, y=10 for the lower two
curves.

tions may also be found for y <1 (see below).

Below, we investigate three periodic examples for the
time dependence of B(¢), namely, a square wave [see Fig.
2(a)] with on-time ¢; [B(¢)—1] and down-time ¢,
[B(t)—0], and a sine-squared wave [see Fig. 2(b)] with
B(t)=[sin(mt /P)]* and P the period.

Results for particular choices of the parameters for the
time-dependent barrier models are shown in Figs. 3-6.
As the figures demonstrate, the approximate analytical
results for N (¢) given by Eq. (7) are in good agreement
with the exact numerical solutions, particularly when the
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FIG. 4. Results for the remaining fraction N (¢) as a function
of time for the exact numerical solution (solid lines) and for the
approximation of Eq. (7) (dashed lines) for the saw-toothed
probability B(¢) shown in Fig. 2(b). The parameter
vy=L (v)/3D. The parameters used were Tp,=1, L=1,
t,=0.1Tp, t,=0.4T,, y=2 for the upper two curves and
Tp=1, L=1,t,=0.1Tp, t,=0.4Tp, y =10 for the lower two
curves.
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FIG. 5. Results for the remaining fraction N (¢) as a function
of time for the exact numerical solution and for the approxima-
tion of Eq. (7) for the sine-squared probability B(¢) shown in
Fig. 2(c). The parameter ¥y =L (v ) /3D. The solid lines are the
exact, numerical solutions and the dashed lines are the analyti-
cal approximation. The parameters used were T, =1, L =1,
P=Tp /2, y=1 for the upper pair of curves and T, =1, L =1,
P =Tp /2, y=10 for the lower pair of curves.

time modulation of the barrier is smoother. Note also
that the error in approximating N (z) with Eq. (8) does
not accumulate over time.

Figure 3 shows the behavior of N (z) for a square-wave
gating, in which the on time (z;) and off time (¢,) are the
same. Other combinations are, of course, possible. The
approximation works least well in this case. Figure 4
shows a second possible periodic gating, that of a saw-
toothed reactivity. The approximation is clearly much
better in this case in which the reactivity increases and
decreases linearly. Figure 5 illustrates the results for a
barrier with a sine-squared gating (see also Ref. [10]).
The agreement between the exact numerical solution and
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FIG. 6. Plots of the exact numerical solutions for N (t), S(¢)
[defined as the left-hand side of Eq. (7)], and g (£)=S(¢)/N(¢)
versus time for the sine-squared probability B(z) shown in Fig.
2(c). The solid line is N(¢), the dash-dot line g(t), and the
dashed line S(t). The parameters used were T,=1, L =1,
P=Tp/2,and y=3.
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TABLE 1. The time-averaged first-passage times, averaged over one period for the three periodic
reactivity functions B(¢). The characteristic time T, =L?2/D, the diffusional relaxation time, and the

dimensionless parameter y =L (v ) /3D.

B(1) (r) lim lim
Y— o y—0
T, t T, t
2+l i+ 2 [1+-2 o
3 f 3 1
Tp 1 Tp
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Ty 1 T T
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3 3

the approximate analytical solution [Eq. (7)] is particular-
ly good for this case in which the barrier reactivity pa-
rameter B(¢) is a smoothly varying function of time.

With a time-dependent reactivity at the absorbing bar-
rier, a mean first-passage time does not strictly exist.
However, when the reactivity is periodic in time, it is
possible to calculate a first-passage time averaged over an
integer number of periods. From Eq. (11), we have

[t _ 3y g B _ AL g,
o 7(t') 2T, Jo 1+(z;l)/3(t,) ()

where At is an integer number of time periods of the gat-
ing function B(z) and (7) is the average mean first-
passing time. The results for the three [(¢) examples are
given in Table 1.

There are three time scales of relevance to diffusion
with a time-modulated barrier: (i) the periodicity of the
barrier (e.g., to+1¢, for the saw-toothed or square-wave
barriers); (ii) the diffusion time scale T;, =L2/D which is
the approximate time to cross the diffusion space via a

diffusion mechanism; and (iii) the ballistic time scale
2L /{v)=2Tp(kgT)/Luv), where Lu{v) is the work
done against the viscous force in traveling a distance L by
an object of friction coefficient u and speed (v ).

Using the exact numerical results for p(x,t), the nu-
merical value of g(¢) may be calculated from Eq. (7).
This has been done for the sine-squared probability B(z)
and the result is plotted in Fig. 6 along with N(¢) and
S (2) [the left-hand side of Eq. (7)]. The exact g(¢) is seen
to begin at its ¢t =0 value of L2/3 and to have the same
periodicity as B(t), phase shifted to slightly later times. It
is also seen to retain its value even though both N (z) and
S (t) are decaying to zero. In fact, this behavior of g(z)
persists to much longer times.

Recent prior work on surmounting fluctuation barriers
has concentrated on the limiting case of a stochastically
switching barrier. In this work, we have examined a
different physical situation, that of surmounting a well-
defined and periodically fluctuating carrier. This could
have relevance, for example, for the movement of elec-
trons between two semiconducting layers separated by a
periodically biased insulating layer.
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